代謝系分化誘導法掲載論文一覧

Induced pluripotent stem cell models of lysosomal storage disorders. 2017, Dis Model Mech, 10, 691-704, PubMed ID: 28592657
D. K. Borger, B. McMahon, T. Roshan Lal, J. Serra-Vinardell, E. Aflaki and E. Sidransky

Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease. 2017, Int J Cardiol, 232, 255-263, PubMed ID: 28082092
S. J. Chou, W. C. Yu, Y. L. Chang, W. Y. Chen, W. C. Chang, Y. Chien, J. C. Yen, Y. Y. Liu, S. J. Chen, C. Y. Wang, Y. H. Chen, D. M. Niu, S. J. Lin, J. W. Chen, S. H. Chiou and H. B. Leu

Imbalanced Production of Reactive Oxygen Species and Mitochondrial Antioxidant SOD2 in Fabry Disease-Specific Human Induced Pluripotent Stem Cell-Differentiated Vascular Endothelial Cells. 2017, Cell Transplant, 26, 513-527, PubMed ID: 27938475
W. L. Tseng, S. J. Chou, H. C. Chiang, M. L. Wang, C. S. Chien, K. H. Chen, H. B. Leu, C. Y. Wang, Y. L. Chang, Y. Y. Liu, Y. J. Jong, S. Z. Lin, S. H. Chiou, S. J. Lin and W. C. Yu

Interleukin-18 deteriorates Fabry cardiomyopathy and contributes to the development of left ventricular hypertrophy in Fabry patients with GLA IVS4+919 G>A mutation. 2016, Oncotarget, 7, 87161-87179, PubMed ID: 27888626
Y. Chien, C. S. Chien, H. C. Chiang, W. L. Huang, S. J. Chou, W. C. Chang, Y. L. Chang, H. B. Leu, K. H. Chen, K. L. Wang, Y. H. Lai, Y. Y. Liu, K. H. Lu, H. Y. Li, Y. J. Sung, Y. J. Jong, Y. J. Chen, C. H. Chen and W. C. Yu

Human-induced pluripotent stem cell approaches to model inborn and acquired metabolic heart diseases. 2016, Curr Opin Cardiol, 31, 266-74, PubMed ID: 27022891
A. M. Chanana, J. W. Rhee and J. C. Wu

Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. 2014, J Inherit Metab Dis, 37, 1013-22, PubMed ID: 24850378
J. M. Itier, G. Ret, S. Viale, L. Sweet, D. Bangari, A. Caron, F. Le-Gall, B. Benichou, J. Leonard, J. F. Deleuze and C. Orsini

Induced Pluripotent Stem Cell Modeling of Gaucher’s Disease: What Have We Learned? 2017, Int J Mol Sci, 18, PubMed ID: 28430167
D. M. Santos and G. Tiscornia

A New Glucocerebrosidase Chaperone Reduces alpha-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism. 2016, J Neurosci, 36, 7441-52, PubMed ID: 27413154
E. Aflaki, D. K. Borger, N. Moaven, B. K. Stubblefield, S. A. Rogers, S. Patnaik, F. J. Schoenen, W. Westbroek, W. Zheng, P. Sullivan, H. Fujiwara, R. Sidhu, Z. M. Khaliq, G. J. Lopez, D. S. Goldstein, D. S. Ory, J. Marugan and E. Sidransky

Gaucher Disease-Induced Pluripotent Stem Cells Display Decreased Erythroid Potential and Aberrant Myelopoiesis. 2015, Stem Cells Transl Med, 4, 878-86, PubMed ID: 26062980
J. A. Sgambato, T. S. Park, D. Miller, L. M. Panicker, E. Sidransky, Y. Lun, O. Awad, S. M. Bentzen, E. T. Zambidis and R. A. Feldman

Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. 2015, PLoS One, 10, e0118771, PubMed ID: 25822147
Y. Sun, J. Florer, C. N. Mayhew, Z. Jia, Z. Zhao, K. Xu, H. Ran, B. Liou, W. Zhang, K. D. Setchell, J. Gu and G. A. Grabowski

Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development. 2014, Stem Cells, 32, 2338-49, PubMed ID: 24801745
L. M. Panicker, D. Miller, O. Awad, V. Bose, Y. Lun, T. S. Park, E. T. Zambidis, J. A. Sgambato and R. A. Feldman

Neuronopathic Gaucher’s disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. 2013, Hum Mol Genet, 22, 633-45, PubMed ID: 23118351
G. Tiscornia, E. L. Vivas, L. Matalonga, I. Berniakovich, M. Barragan Monasterio, C. Eguizabal, L. Gort, F. Gonzalez, C. Ortiz Mellet, J. M. Garcia Fernandez, A. Ribes, A. Veiga and J. C. Izpisua Belmonte

Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. 2012, Proc Natl Acad Sci U S A, 109, 18054-9, PubMed ID: 23071332
L. M. Panicker, D. Miller, T. S. Park, B. Patel, J. L. Azevedo, O. Awad, M. A. Masood, T. D. Veenstra, E. Goldin, B. K. Stubblefield, N. Tayebi, S. K. Polumuri, S. N. Vogel, E. Sidransky, E. T. Zambidis and R. A. Feldman

Neural cells generated from human induced pluripotent stem cells as a model of CNS involvement in mucopolysaccharidosis type II. 2018, J Inherit Metab Dis, 41, 221-229, PubMed ID: 29168031
J. Rybova, J. Ledvinova, J. Sikora, L. Kuchar and R. Dobrovolny

Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder. 2016, Stem Cell Res, 17, 514-516, PubMed ID: 27789401
E. Varga, C. Nemes, E. Kovacs, I. Bock, N. Varga, A. Feher, A. Dinnyes and J. Kobolak

Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation. 2016, Stem Cell Res, 17, 482-484, PubMed ID: 27789399
E. Varga, C. Nemes, I. Bock, N. Varga, A. Feher, A. Dinnyes and J. Kobolak

Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 3-year-old male with pathogenic IDS mutation. 2016, Stem Cell Res, 17, 479-481, PubMed ID: 27789398
E. Varga, C. Nemes, I. Bock, N. Varga, A. Feher, J. Kobolak and A. Dinnyes

Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 7-year-old male with pathogenic IDS mutation. 2016, Stem Cell Res, 17, 463-465, PubMed ID: 27789394
E. Varga, C. Nemes, I. Bock, N. Varga, A. Feher, J. Kobolak and A. Dinnyes

X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. 2016, Folia Biol (Praha), 62, 82-9, PubMed ID: 27187040
M. Reboun, J. Rybova, R. Dobrovolny, J. Vcelak, T. Veselkova, G. Storkanova, D. Musalkova, M. Hrebicek, J. Ledvinova, M. Magner, J. Zeman, K. Peskova and L. Dvorakova

Generation of Human Induced Pluripotent Stem Cell-Derived Bona Fide Neural Stem Cells for Ex Vivo Gene Therapy of Metachromatic Leukodystrophy. 2017, Stem Cells Transl Med, 6, 352-368, PubMed ID: 28191778
V. Meneghini, G. Frati, D. Sala, S. De Cicco, M. Luciani, C. Cavazzin, M. Paulis, W. Mentzen, F. Morena, S. Giannelli, F. Sanvito, A. Villa, A. Bulfone, V. Broccoli, S. Martino and A. Gritti

Arylsulfatase A Overexpressing Human iPSC-derived Neural Cells Reduce CNS Sulfatide Storage in a Mouse Model of Metachromatic Leukodystrophy. 2015, Mol Ther, 23, 1519-31, PubMed ID: 26061647
J. Doerr, A. Bockenhoff, B. Ewald, J. Ladewig, M. Eckhardt, V. Gieselmann, U. Matzner, O. Brustle and P. Koch

Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. 2013, Biotechnol Adv, 31, 1032-46, PubMed ID: 23531528
A. K. Chen, S. Reuveny and S. K. Oh

Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. 2006, Gene Ther, 13, 1686-95, PubMed ID: 16871228
D. Klein, T. Schmandt, E. Muth-Kohne, A. Perez-Bouza, M. Segschneider, V. Gieselmann and O. Brustle

Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks. 2015, Stem Cell Reports, 5, 546-57, PubMed ID: 26411903
I. Canals, J. Soriano, J. G. Orlandi, R. Torrent, Y. Richaud-Patin, S. Jimenez-Delgado, S. Merlin, A. Follenzi, A. Consiglio, L. Vilageliu, D. Grinberg and A. Raya

Heparan sulfate saccharides modify focal adhesions: implication in mucopolysaccharidosis neuropathophysiology. 2015, J Mol Biol, 427, 775-91, PubMed ID: 25268803
J. Bruyere, E. Roy, J. Ausseil, T. Lemonnier, G. Teyre, D. Bohl, S. Etienne-Manneville, H. Lortat-Jacob, J. M. Heard and S. Vitry

Generation of patient specific human neural stem cells from Niemann-Pick disease type C patient-derived fibroblasts. 2017, Oncotarget, 8, 85428-85441, PubMed ID: 29156730
E. A. Sung, K. R. Yu, J. H. Shin, Y. Seo, H. S. Kim, M. G. Koog, I. Kang, J. J. Kim, B. C. Lee, T. H. Shin, J. Y. Lee, S. Lee, T. W. Kang, S. W. Choi and K. S. Kang

Activation of PKC triggers rescue of NPC1 patient specific iPSC derived glial cells from gliosis. 2017, Orphanet J Rare Dis, 12, 145, PubMed ID: 28841900
F. Peter, S. Rost, A. Rolfs and M. J. Frech

Decreased calcium flux in Niemann-Pick type C1 patient-specific iPSC-derived neurons due to higher amount of calcium-impermeable AMPA receptors. 2017, Mol Cell Neurosci, 83, 27-36, PubMed ID: 28666962
M. Rabenstein, F. Peter, S. Joost, M. Trilck, A. Rolfs and M. J. Frech

Dataset in support of the generation of Niemann-Pick disease Type C1 patient-specific iPS cell lines carrying the novel NPC1 mutation c.1180T>C or the prevalent c.3182T>C mutation – Analysis of pluripotency and neuronal differentiation. 2017, Data Brief, 12, 123-131, PubMed ID: 28413817
F. Peter, M. Trilck, M. Rabenstein, A. Rolfs and M. J. Frech

Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons. 2017, Brain Res, 1657, 52-61, PubMed ID: 27923633
M. Trilck, F. Peter, C. Zheng, M. Frank, K. Dobrenis, H. Mascher, A. Rolfs and M. J. Frech

Telocytes: a potential defender in the spleen of Npc1 mutant mice. 2017, J Cell Mol Med, 21, 848-859, PubMed ID: 27860245
B. Zhang, C. Yang, L. Qiao, Q. Li, C. Wang, X. Yan and J. Lin

Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells. 2017, Brain Res, 1656, 63-67, PubMed ID: 26972536
M. P. Ordonez and J. W. Steele

Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A. 2016, Stem Cells Transl Med, 5, 1644-1655, PubMed ID: 27484861
Y. Long, M. Xu, R. Li, S. Dai, J. Beers, G. Chen, F. Soheilian, U. Baxa, M. Wang, J. J. Marugan, S. Muro, Z. Li, R. Brady and W. Zheng

Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. 2016, Am J Pathol, 186, 517-23, PubMed ID: 26784526
M. Bosch, A. Fajardo, R. Alcala-Vida, A. Fernandez-Vidal, F. Tebar, C. Enrich, F. Cardellach, E. Perez-Navarro and A. Pol

Generation and Neuronal Differentiation of Patient-Specific Induced Pluripotent Stem Cells Derived from Niemann-Pick Type C1 Fibroblasts. 2016, Methods Mol Biol, 1353, 233-59, PubMed ID: 25520288
M. Trilck, R. Hubner and M. J. Frech

Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. 2015, Proc Natl Acad Sci U S A, 112, E4281-7, PubMed ID: 26195741
S. Y. Kuo, A. B. Castoreno, L. N. Aldrich, K. G. Lassen, G. Goel, V. Dancik, P. Kuballa, I. Latorre, K. L. Conway, S. Sarkar, D. Maetzel, R. Jaenisch, P. A. Clemons, S. L. Schreiber, A. F. Shamji and R. J. Xavier

Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. 2015, Stem Cells Transl Med, 4, 230-8, PubMed ID: 25637190
A. G. Efthymiou, J. Steiner, W. J. Pavan, S. Wincovitch, D. M. Larson, F. D. Porter, M. S. Rao and N. Malik

HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. 2015, Stem Cells, 33, 1075-88, PubMed ID: 25522247
M. Soga, Y. Ishitsuka, M. Hamasaki, K. Yoneda, H. Furuya, M. Matsuo, H. Ihn, N. Fusaki, K. Nakamura, N. Nakagata, F. Endo, T. Irie and T. Era

Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. 2014, Nat Commun, 5, 5514, PubMed ID: 25417698
H. Lee, J. K. Lee, M. H. Park, Y. R. Hong, H. H. Marti, H. Kim, Y. Okada, M. Otsu, E. J. Seo, J. H. Park, J. H. Bae, N. Okino, X. He, E. H. Schuchman, J. S. Bae and H. K. Jin

Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. 2014, Stem Cell Reports, 2, 866-80, PubMed ID: 24936472
D. Maetzel, S. Sarkar, H. Wang, L. Abi-Mosleh, P. Xu, A. W. Cheng, Q. Gao, M. Mitalipova and R. Jaenisch

Niemann-Pick Disease Type C: Induced Pluripotent Stem Cell-Derived Neuronal Cells for Modeling Neural Disease and Evaluating Drug Efficacy. 2014, J Biomol Screen, 19, 1164-73, PubMed ID: 24907126
D. Yu, M. Swaroop, M. Wang, U. Baxa, R. Yang, Y. Yan, T. Coksaygan, L. DeTolla, J. J. Marugan, C. P. Austin, J. C. McKew, D. W. Gong and W. Zheng

Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks. 2013, Orphanet J Rare Dis, 8, 144, PubMed ID: 24044630
M. Trilck, R. Hubner, P. Seibler, C. Klein, A. Rolfs and M. J. Frech

Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. 2018, J Lipid Res, 59, 550-563, PubMed ID: 29358305
M. L. Allende, E. K. Cook, B. C. Larman, A. Nugent, J. M. Brady, D. Golebiowski, M. Sena-Esteves, C. J. Tifft and R. L. Proia

Induced Pluripotent Stem Cell Technology: A Paradigm Shift in Medical Science for Drug Screening and Disease Modeling. 2017, Curr Med Chem, 24, 4368-4398, PubMed ID: 28748763
M. Nair, S. S. Sandhu and A. K. Sharma

Generation of HEXA-deficient hiPSCs from fibroblasts of a Tay-Sachs disease patient. 2016, Stem Cell Res, 17, 289-291, PubMed ID: 27879213
Z. Liu and R. Zhao

Modeling and rescue of defective blood-brain barrier function of induced brain microvascular endothelial cells from childhood cerebral adrenoleukodystrophy patients. 2018, Fluids Barriers CNS, 15, 9, PubMed ID: 29615068
C. A. A. Lee, H. S. Seo, A. G. Armien, F. S. Bates, J. Tolar and S. M. Azarin

Generation of induced pluripotent stem cell (iPSC) line from a 21-year-old X-linked adrenoleukodystrophy (X-ALD) patient. 2017, Stem Cell Res, 25, 136-138, PubMed ID: 29128817
Y. R. You, D. Son, P. J. Kang, S. You and D. S. Kim

Generation of human embryonic stem cells from abnormal blastocyst diagnosed with adrenoleukodystrophy. 2016, Stem Cell Res, 17, 634-636, PubMed ID: 27934597
Q. Ouyang, X. Zhou, J. Chen, J. Du, G. Lu, G. Lin and Y. Sun

Efficient derivation of microglia-like cells from human pluripotent stem cells. 2016, Nat Med, 22, 1358-1367, PubMed ID: 27668937
J. Muffat, Y. Li, B. Yuan, M. Mitalipova, A. Omer, S. Corcoran, G. Bakiasi, L. H. Tsai, P. Aubourg, R. M. Ransohoff and R. Jaenisch

Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy. 2015, PLoS One, 10, e0143238, PubMed ID: 26581106
M. Baarine, M. Khan, A. Singh and I. Singh

Induced pluripotent stem cells for modeling of pediatric neurological disorders. 2014, Biotechnol J, 9, 871-81, PubMed ID: 24838856
J. Jang, Z. Quan, Y. J. Yum, H. S. Song, S. Paek and H. C. Kang

Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. 2012, Exp Mol Med, 44, 202-13, PubMed ID: 22179105
J. Jang, J. E. Yoo, J. A. Lee, D. R. Lee, J. Y. Kim, Y. J. Huh, D. S. Kim, C. Y. Park, D. Y. Hwang, H. S. Kim, H. C. Kang and D. W. Kim

Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. 2011, Ann Neurol, 70, 402-9, PubMed ID: 21721033
J. Jang, H. C. Kang, H. S. Kim, J. Y. Kim, Y. J. Huh, D. S. Kim, J. E. Yoo, J. A. Lee, B. Lim, J. Lee, T. M. Yoon, I. H. Park, D. Y. Hwang, G. Q. Daley and D. W. Kim

Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. 2017, Stem Cells, 35, 1655-1662, PubMed ID: 28544378
G. Inak, C. Lorenz, P. Lisowski, A. Zink, B. Mlody and A. Prigione

Generation of a human iPSC line from a patient with a mitochondrial encephalopathy due to mutations in the GFM1 gene. 2016, Stem Cell Res, 16, 124-7, PubMed ID: 27345796
F. Zurita-Diaz, T. Galera-Monge, A. Moreno-Izquierdo, M. F. Fraga, C. Ayuso, A. F. Fernandez, R. Garesse and M. E. Gallardo

Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells. 2016, Aging (Albany NY), 8, 945-57, PubMed ID: 27127184
S. S. Hung, N. J. Van Bergen, S. Jackson, H. Liang, D. A. Mackey, D. Hernandez, S. Y. Lim, A. W. Hewitt, I. Trounce, A. Pebay and R. C. Wong

iPSCs, a Future Tool for Therapeutic Intervention in Mitochondrial Disorders: Pros and Cons. 2016, J Cell Physiol, 231, 2317-8, PubMed ID: 27018482
T. Galera, F. Zurita-Diaz, R. Garesse and M. E. Gallardo

Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics. 2016, Stem Cells, 34, 801-8, PubMed ID: 26850516
H. Hatakeyama and Y. Goto

Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling. 2016, Biochim Biophys Acta, 1860, 686-93, PubMed ID: 26779594
Y. C. Hsu, C. T. Chen and Y. H. Wei

Mitochondrial Disease-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization. 2016, Methods Mol Biol, 1353, 323-42, PubMed ID: 25646615
X. Zhang, S. Li, W. Yang, H. Pan, D. Qin, X. Zhu and Q. Yan

In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells. 2017, Biol Chem, 398, 939-954, PubMed ID: 28051995
J. Hoepfner, M. Kleinsorge, O. Papp, S. Alfken, R. Heiringhoff, A. Pich, V. Sauer, A. Zibert, G. Gohring, H. Schmidt, M. Sgodda and T. Cantz

Involvement of Macrophages in the Pathogenesis of Familial Amyloid Polyneuropathy and Efficacy of Human iPS Cell-Derived Macrophages in Its Treatment. 2016, PLoS One, 11, e0163944, PubMed ID: 27695122
G. Suenaga, T. Ikeda, Y. Komohara, K. Takamatsu, T. Kakuma, M. Tasaki, Y. Misumi, M. Ueda, T. Ito, S. Senju and Y. Ando

Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells. 2016, PLoS One, 11, e0161455, PubMed ID: 27584576
C. J. Niemietz, V. Sauer, J. Stella, L. Fleischhauer, G. Chandhok, S. Guttmann, Y. Avsar, S. Guo, E. J. Ackermann, J. Gollob, B. P. Monia, A. Zibert and H. H. Schmidt

Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs). 2016, Methods Mol Biol, 1353, 261-70, PubMed ID: 25646614
A. Leung and G. J. Murphy

Generation of familial amyloidotic polyneuropathy-specific induced pluripotent stem cells. 2014, Stem Cell Res, 12, 574-83, PubMed ID: 24531302
K. Isono, H. Jono, Y. Ohya, N. Shiraki, T. Yamazoe, A. Sugasaki, T. Era, N. Fusaki, M. Tasaki, M. Ueda, S. Shinriki, Y. Inomata, S. Kume and Y. Ando

Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. 2013, Stem Cell Reports, 1, 451-63, PubMed ID: 24286032
A. Leung, S. K. Nah, W. Reid, A. Ebata, C. M. Koch, S. Monti, J. C. Genereux, R. L. Wiseman, B. Wolozin, L. H. Connors, J. L. Berk, D. C. Seldin, G. Mostoslavsky, D. N. Kotton and G. J. Murphy

Establishment of hepatic and neural differentiation platforms of Wilson’s disease specific induced pluripotent stem cells. 2012, Protein Cell, 3, 855-63, PubMed ID: 22806248
F. Yi, J. Qu, M. Li, K. Suzuki, N. Y. Kim, G. H. Liu and J. C. Belmonte

Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. 2011, Hum Mol Genet, 20, 3176-87, PubMed ID: 21593220
S. Zhang, S. Chen, W. Li, X. Guo, P. Zhao, J. Xu, Y. Chen, Q. Pan, X. Liu, D. Zychlinski, H. Lu, M. D. Tortorella, A. Schambach, Y. Wang, D. Pei and M. A. Esteban

Establishment and directed differentiation of induced pluripotent stem cells from glycogen storage disease type Ib patient. 2013, Genes Cells, 18, 1053-69, PubMed ID: 24581426
D. Satoh, T. Maeda, T. Ito, Y. Nakajima, M. Ohte, A. Ukai, K. Nakamura, S. Enosawa, M. Toyota, Y. Miyagawa, H. Okita, N. Kiyokawa, H. Akutsu, A. Umezawa and T. Matsunaga

A Skeletal Muscle Model of Infantile-onset Pompe Disease with Patient-specific iPS Cells. 2017, Sci Rep, 7, 13473, PubMed ID: 29044175
T. Yoshida, T. Awaya, T. Jonouchi, R. Kimura, S. Kimura, T. Era, T. Heike and H. Sakurai

GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells. 2017, Mol Ther Nucleic Acids, 7, 101-115, PubMed ID: 28624186
E. van der Wal, A. J. Bergsma, T. J. M. van Gestel, S. L. M. In ‘t Groen, H. Zaehres, M. J. Arauzo-Bravo, H. R. Scholer, A. T. van der Ploeg and W. Pijnappel

Human-Induced Pluripotent Stem Cell-Based Modeling of Cardiac Storage Disorders. 2017, Curr Cardiol Rep, 19, 26, PubMed ID: 28251514
B. C. Nelson, S. I. Hashem and E. D. Adler

Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. 2015, J Biol Chem, 290, 3121-36, PubMed ID: 25488666
K. K. Raval, R. Tao, B. E. White, W. J. De Lange, C. H. Koonce, J. Yu, P. S. Kishnani, J. A. Thomson, D. F. Mosher, J. C. Ralphe and T. J. Kamp

The generation of induced pluripotent stem cells (iPSCs) from patients with infantile and late-onset types of Pompe disease and the effects of treatment with acid-alpha-glucosidase in Pompe’s iPSCs. 2014, Mol Genet Metab, 112, 44-8, PubMed ID: 24642446
T. Higuchi, S. Kawagoe, M. Otsu, Y. Shimada, H. Kobayashi, R. Hirayama, K. Eto, H. Ida, T. Ohashi, H. Nakauchi and Y. Eto

iPS cell modeling of cardiometabolic diseases. 2013, J Cardiovasc Transl Res, 6, 46-53, PubMed ID: 23070616
K. Nakamura, K. Hirano and S. M. Wu

Using human-induced pluripotent stem cells to model monogenic metabolic disorders of the liver. 2012, Semin Liver Dis, 32, 298-306, PubMed ID: 23397530
M. P. Ordonez and L. S. Goldstein

Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. 2011, Hum Mol Genet, 20, 4851-64, PubMed ID: 21926084
H. P. Huang, P. H. Chen, W. L. Hwu, C. Y. Chuang, Y. H. Chien, L. Stone, C. L. Chien, L. T. Li, S. C. Chiang, H. F. Chen, H. N. Ho, C. H. Chen and H. C. Kuo



コメントは受け付けていません。