Fig.5 Sequence analysis of Cytochrome b (cytb) of LAH1 (The region of cytb to distinguish subspecies of Bufo in Fig.4)

①cytb sequence of Pelophylax nigromaculatus https://www.ncbi.nlm.nih.gov/nuccore/KT878718.1
②RCB1733 LAH1 Lot.1 :Result of distributed LAH1 cells (Lot.1): deposited as Pelophylax nigromaculatus origin
③RCB1733 LAH1 TK :Result of LAH1 cells immediately after deposition
④cytb sequence of Bufo japonicas formosus https://www.ncbi.nlm.nih.gov/nuccore/AB713498

1 2 3 4	1 ATCTGCATCTACTTCCACATTGGCCGGGGGTGTTTACTATGGCTCCTCCTTCCT	CTGA 150
1 2 3 4	151 GGGGCAACGGTATTACCAARCTCCTTCTCCGCGCCCCCTACATGGGCCAGACCTGTCAATGAATTGGGGGGGCTTCGTCGGTGGACAACGCCACCGCGTTTCTTACATTCCACTTCACTTCACTTGCCGCCCCCCCC	
1 2 3 4	301 GCARGTATERTECACCTRETETTECTICAECAAACTGGETCCTCTAACCCAACAGGACTAAATTCTAACCTAGGATAAAGTCTCTTTTCACGCCTACTTCTCAAAGACCTCCTCGGATTGGTTAGGTGACCCGACAGGCCTAAACCGCAAGATCCCCCTTCCACGCCTACTACTCCTACAAAGACCCCTTCGGTTCGGCAATTATGCTTGCT	CTCT 450 CCTC 450 CCTC 450 CCTC 450 CCTC 450
3	451 ETETCCACCTTCGCCCCTAACCTECTTGGAGAECCAGACAATTTACACCAGECTAACCCACTEGTTACACCECCCCCCCACCACAGATTGAAGCCAGATTGATACTTCETTTCGCETAAGCCATCCTTCGCTCAATECCEAACAAATTAGGAGA 451 TTGTCCACCTTCGCCCCCAACCTCCTGGGTGATCCAGACAACTTTACACCCGCCAACCCACTAGTCACCCCACCACACATCAAGCCAGAGTGATACTTCTTATTCGCTTATGCCATCCTTCGCTCAATTCCAAACAAA	AGTC 600
1 2 3 4	601 ETEGCECTECTTETCTCHATEATACTCCTETTECTEATGCCTATTATTCACACHTCTAAACTCCGGCCCTTATHTTCGGCCAAAAAGCTTCTTETGACACTAATGCCAAAAACCTCCTCTTGGCAAAAACCTCTCTTTGGCCAAAAACCCTCATTCTAACCACHTCGACACCTCGAAACGAACCCTCAAACGAACCCTCGGCGCCTTGGCAAAAACCTTCTTTGGACACTAGTAGCCAACACCCCCCATTCTAACCTGGAGGGGGGGG	TCAA 750 TCAA 750
2	751 CCAGT <mark>E</mark> GAAGATCC <mark>ETTTATTACC</mark> ATTGGTCAART <mark>E</mark> GCCTC <mark>CGGACTT</mark> TACTT <mark>TCTT</mark> ATCTT <mark>TC</mark> TC <mark>ETTE</mark> TTATCCC <mark>ATCA</mark> 751 CCAGTAGAAGACCCATTCGTCATAATTGGCCAACTAGCCTCTATCTCCTACTTCCTCATCATCATCATTCTTACCCCCTC 751 CCAGTAGAAGACCCATTCGTCATAATTGGCCAACTAGCCTCTATCTCCTACTTCCTCATCATTTTTATCCCCCCTC 751 CCAGTAGAAGACCCATTCGTCATAATTGGCCAACTAGCCTCTATCTCCTACTTCCTCATCATTTTTATCCCCCCTC	831 831 831 831